RHEODYNAMICS OF A DISK ROTATING IN A
NON~-NEWTONIAN LIQUID

T. A. Rogovskii and Z. R. Gorbis UDC 532.135

The power approximation to the consistency flow curve of a rotating disk is considered; a
criterial relationship for the rheodynamic resistance of the disk is then deduced. Experi-
mental data obtained in solutions of sodium carboxymethyl cellulose (CMC) for C = 0~-1.5%
agree closely with the proposed generalization.

The practical use of the Tomes effect in open or closed hydraulic systems [1-3] requires the deriva-
tion of a criterial relationship for the rheodynamic resistance of a rotating disk, the latter being an in-
herent part of any bladed machine.

When studying the rheodynamic resistance of disks rotating in a non-Newtonian liquid it is desirable
to use the power approximation to the consistency flow curve [4] for a rotating disk,

P =RV, (1)

Using the Cochran solution [5] we may write the integrated mean values of the stress and shear
strain rate in the form

p_t M

3 R V=129 VRe. 2)

The rheodynamic resistance coefficient of a rotating disk wetted on both sides is determined, after
allowing for Egs. (1) and (2), by

2M 3t—n” An”
Cu=- = TR (3)
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The generalized Reynolds number Re™ in Eq. (3) is described in the following way:
Rer/?
1t — . 4
Re Re#” “
209 2—n"
Re" = _PR%—. (5)

Some preliminary results of an experimental verification of the proposed generalization of the rheo-
dynamic resistance of a rotating disk were presented in [6]. In the present investigation a detailed experi-~
mental verification of Eq. (3) was carried out in a "smooth disk — shell" system filled with aqueous solu-
tions of sodium carboxymethyl cellulose (CMC) with 2 mass concentration of C = 0-1.5% at t = 25°C. The
experiments in the "disk-in-shell" apparatus embraced the following ranges of characteristic geometrical
parameters: disk diameters d = 120-128.5 mm with a relative width of b/R = 0.025-0.055, relative axial
and radial gaps, respectively, S/R = 0.0659-0.487 and @/R = 0.011~0.083. The casing or shell of the ap-
paratus limiting the space around the rotating disk was immersed in a U10 thermostat which thermally
stabilized the liquid under test. The mechanical drive was a de motor providing 2 smooth variation be-
tween n = 5 and 130 rps. The torque developed by the disk was measured with a thin-walled (hollow) ten-
sometric shaft and 2 mercury amalgam current take-off. The error in measuring the torque and the rate
of revolution was no greater than 1% {7, 8].
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Fig. 1. Flow curves of CMC solutions in the loga~
rithmic anamorphosis: 1) C =0.1%; 2) 0.25; 3) 0.5;
4) 0.75; 5) 1.0; 6) 1.5. (4M/3R%-107%, N/m% wVRe
-107¢, sec”l.
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Fig. 2. Rheological parameters as functions of the
mass concentration of the CMC solutions: 1) approxi-
mation of the consistency flow curves by reference to
experimental data for a rotating disk; 2) correlation
based on Egqs. (10) and (11); 3) based on viscometric
data obtained by the capillary method. k+10%, N-sec
/m?%; k" 103, N-secl"/m?.
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The rheological constants n" and k" were determined by solving the power equation (1) with due al-
lowance for (2) by reference to the experimentally measured characteristic M = f{w) for a2 smooth disk
128.5 mm in diameter rotating in CMC solutions in an unbounded space (mass concentrations C = 0~1,5%).
For testing the stationary liquid in free space the shell of the apparatus was taken away, and the disk,
supported in cantilever fashion on a vertical axis, was immersed in a special tank, the specified tempera-
ture being maintained in this tank by the circulation of liquid through a TS-24 thermostat,

The rectilinear anamorphosis of the consistency flow curves for a rotating disk in the range of
shear velocities under consideration (Fig. 1) enables us to derive a power approximation with a mean~
square error as low as 1% and to obtain satisfactory correlation for n" and k" with respect to the concen-
tration of the CMC solutions (Fig. 2).

Thus, the experimental data presented here indicate the absence of any marked change in the mode
of secondary flow induced by the disk; the fact that the experimental range of measurement of the M = f(w)
characteristic lies close to Re's indicates that centrifugal flow is taking place around the rotating disk
during the experiments [9].

Since the ranges of variation of the axial gaps and the Reynolds numbers (Re = 9+10%-4 -10% studied
satisfy the conditions characteristic of the existence of separate boundary layers on the stator and rotor
[10] (this mode of flow being realized, for example, in centrifugal pumps [11]), Eq. (3) enables us to
generalize the rheodynamic resistance of a disk rotating in a shell (Fig. 3).

For the range of CMC concentrations and the characteristic geometrical parameters of the disk
— shell system studied we obtain a unique value of the critical Reynolds number,

n2

Rey = ~ (3—5). 105, CY

Rew =

For Re™ > Rel; the uniqueness of Eq. (3) is disrupted, and it is converted into a family of straight
lines with a parameter n" qualitatively repeating the well-known generalization of Metzner and Reed for
tubes [4].

.For the laminar and turbulent modes of flow around a rotating disk in a shell we obtain an approxi-
mation for the experimental data (based on ~1200 experimental points) with mean-square errors of ~1.5
and ~6%, respectively.

For Re™ < 3+10% S/R = 0.066-0.49:

_ 3-"{1.97[lg (S/R + 0.224) - 2.04]}"

CM R e 0.5

(6)

for Re™ > 7-10% S/R = 0,066-0,49:

0.338 exp 19 (1 — 1) [1g (S/R — 2.37) —0.165]

Cu= Re0-2+1-550=r7) . M

These experiments once more demonstrate the unusual ability of CMC solutions {already described
in [12]) to suppress turbulent pulsations. We see from Fig. 3 that even for C = 1,5%, the Cpp = f(Re™)
curve for Re™ > Re'y very closely approaches the limiting asymptote corresponding to laminar flow around -
the object. Hence, for C > 1.5% (n" < 0.81), Re™ > Re',',l and S/R = 0.066-0.49 the resistance coefficient
CM should be determined from Eq. (8), and not Eq. (7), which was obtained as a result of 2 generalization
of the experimental data in the range C = 0-1.5% (n" = 1-0,81).

For n" =1 and k" = u, Eq. (3) transforms into the ordinary relationship for a Newtonian liquid in
the case of laminar flow around a rotating disk [5], while (6) and (7) transform into the corresponding
" equations describing the change in the moment of the resistance coefficient of the disk as a function of the
Reynolds number and the axial gap [13].

It follows from Egs. (6) and (7) that a relative change in the axial gap S/R has a similar effect on
CwM for both Newtonian and non-Newtonian liquids. This is apparently a consequence of the retention of
the separate boundary layers on the stator and rotor in the range of S/R values considered, even in the
case of a disk rotating in a non-Newtonian liquid.

These experimental data regarding the rheodynamic resistance of a rotating disk in CMC solutions
with C = 0-1,5% in an unlimited space agree closely with the solution of Mitschka, which on making allow-
ance for [15] reduces to
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Using the Mitschka solution [14] and assuming that the Cpyp = f(Re™) and Cp = ¢(Rey,) relationships
are invariant with respect to p, R, and w, we may establish a relationship between the rheological param-
eters n", k" and n, k. It thus follows from (3), 4), (56), and (8), (9) that

W= = n_ (10)
+n
&’1 _t=n
B=k (i‘-) 10,951 (11)

The values of n" and k" calculated from Eqgs. (10) and (11) agree closely with direct measurement
(Fig. 2).

We have thus established the following,

1. The generalized Reynolds number () is a criterion of rheodynamic similarity, and for the flow
of a non-Newtonian liquid around a rotating disk uniquely establishes a crisis at Rek = (3-5) 105,

2, The rheodynamic resistance coefficients of disks rotating both in the free space of a non-New-
tonian liquid and in a shell (casing) with 8/R = 0.066-0.49, /R =0.01-0.08, and b/R = 0.02-0.06 may be
calculated from the corresponding equations (3), (6), and (7) using the values of n", k" or n, k (n', k'),
determined by viscometric measurements on solutions of high polymers.

NOTATION
P=f(r); V==£(y) are the generalized variables of the consistency flow equations for a rotating disk;
T is the shear stress at the wall, N/m?;
v is the shear strain rate, sec™;
n,n',n" andk, k', k" are the rheological parameters determined for parts of the flow curves which are
linear in the logarithmic anamorphosis;
R is the disk radius, m;
w is the angular frequency of rotation, sec™!;
M is the moment of resistance of the rotating disk wetted from one side, N-m;
Re = przu'1 is the Reynolds number;
u is the viscosity, N-sec/m?;
Cum ' is the rheodynamic resistance coefficient of the rotating disk;
A is the coefficient in the equation for determining the hydrodynamic resistance of a

rotating disk in a Newtonian liquid (A = 3.87 for a disk rotating in the free space of
a stationary liquid); '

Re", Re" are the generalized Reynolds numbers determined by Eqgs. (4) and (5);

C is the mass concentration;

t is the temperature, °C;

d is the disk diameter, m;

b is the disk width (thickness), m; }
Sand a are the axial and radial gaps between the disk and the shell walls, respectively, m;
n is the number of revolutions, rps;

Re’ is the critical Reynolds number;

Rem is the generalized Reynolds number derived from Eq. (9).
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